Instrumentation, Technologies, R&D Cost & Schedule

• SuperNova /Acceleration Probe

• GigaCAM, a billion pixel CCD array

Talk Outline:

- Requirements (throughout)
- GigaCAM / CCD Technology
- Spectroscopy
- Observatory
- Orbit

[Spacecraft Talks]

- Cost (Phase I, Phase II)
- Schedule
- Management (Phase I)

Presented by: Michael Levi March 29, 2000

Instrumentation Requirements

- Need consistent uniform data set where selection criteria can be applied and systematic sources can be analyzed and factored.
- Minimum data set criteria:
 - 1) discovery within 2 days of explosion (peak + 3.8 magnitude),
 - 2) 10 high S/N photometry points on lightcurve,
 - 3) lightcurve out to plateau (2.5 magnitude from peak),
 - 4) high quality spectrophotometry at peak,
 - 5) IR spectra.
- How to obtain both data quantity AND data quality?

Batch processing techniques w/ wide field imager -- large multiplex advantage Mostly preprogrammed observations, fixed fields / spin filter wheel

No Trigger (z < 1.2)

Very simple experiment, passive, almost like accelerator expt.

Well calibrated photometry and spectroscopy

Instrumentation Suite

Key Instruments:

1) Wide Field Imager (one billion pixels)

2) IR Photometer (small field of view)

3) 3-channel spectrograph 350-600 nm, 550-1000 nm, 900-1700 nm

4) Star Guider (image stabilization)

5) Telescope, Optics Bench, Filters, Shutters

Optical Photometry Requirements

Field-of-view 1° x 1°

Plate Scale 1 pixel ~ 0.1 arcsec

Pixelization 32k x 32k CCD mosaic

Wavelength coverage 350nm - 1000nm

Detector Type High-Resistivity P-channel CCD's

Detector Architecture 2k x 2k, or 2k x 4k

Detector Temperature 150 K

Quantum Efficiency 65% 1000nm, 92% 900nm, >85% 400-800nm

Read Noise 4 e- @ 100kHz

Exposure Time up to 1000 sec (single exposures)

Number of Frames 1 to 24

Dark Current 0.08 e-/min/pixel

Readout Time 20 sec

Limiting Magnitude 30th magnitude in Z-band

Exposure control Mechanical shutter

Filter Wheel 15 bands (U, V, R, I, Z, & 10 special filters)

GigaCAM

GigaCAM, a one billion pixel array

- Depending on pixel scale approximately 1 billion pixels (32k x 32k imager)
- ~200 Large format CCD detectors required
- 150K operation
- Issues: detectors, electronics, metrology
- Looks like the SLD vertex detector in Si area (0.1 0.2 m²)
- Larger than SDSS camera, smaller than BaBar Vertex Detector (1 m²)
- Collaboration has lots of experience in building very large silicon detectors and custom readout electronics including radiation hard integrated circuits (should they be necessary).

Imager Technology

32K by 32K Optical Imager Array

BaBAR Silicon Vertex Detector (~1m² Si)

Fully-Depleted CCD's

The New Approach:

Make a thick CCD on a high-resistivity n-type substrate, to operate fully depleted with rear illumination.

3-phase

CCD structure

Advantages:

- 1) Conventional MOS processes with no thinning=> "inexpensive"
- 2) Full quantum efficiency to $> 1 \mu m => no fringing$
- 3) Good blue response with suitably designed rear contact
- 4) Radiation tolerant

Disadvantages:

1) Enhanced sensitivity to radiation (x-rays, cosmic rays, radioactive decay)

Typical CCD's

Front-illuminated CCD: Thinned CCD with back-illumination: 3-phase

Drawbacks:

- 1) Poor blue response due to absorption in polysilicon gate electrodes
- 2) Poor near-IR response due to thinness of the epitaxial layer
- 3) Interference patterns due to gate structure

Drawbacks:

- 1) Thinning is difficult and expensive
- 2) Poor near-IR response
- 3) Interference (fringing)
- 4) Lateral diffusion in fieldfree region (degraded PSF)

CCD Technology

Photoactive region of standard CCD's are 10-20 microns thick Photoactive region of Fully-Depleted CCD's are 300 microns thick

Quantum Efficiency

- Better overall response than more costly "thinned" devices in use
- High-purity silicon has better radiation tolerance for space applications
- Measured Quantum Efficiency at Lick Observatory (R. Stover):

Portrait Gallery from Lick Observatory Fully-Depleted CCD's

 $2k \times 2k$

2k x 2k

CCD Status

- 2k x 2k (15 μm pixels) design successful, meets SNAP performance requirements
- Commercialization at Mitel Corp, Bromont Canada

Fabricating 2k x 2k (15 µm pixels)

Two separate processing runs (1) Mitel "standard"; (2) modified process recipe

Current run of 25 wafers; will be followed immediately by another run

• Current in house fabrication

2k x 4k (15 µm pixels) for Eschellette Spectrograph and Imager (Keck)

2k x 4k (12 µm pixels)

2k x 4k (10.5 µm pixels)

- NSF grant to develop technology for astronomy
- Requires further extensive radiation testing (already tested at LBNL 88" cyclotron to 20% of SNAP lifetime exposure w/o degradation) & large scale prototyping
- Complete commercialization

Electronics

GigaCAM Readout looks like high density vertex detector readout with 400 readout channels (two per CCD)

IR Photometry Requirements

Field-of-view 1' x 1'

Plate Scale 1 pixel ~ 0.1 arcsec

Wavelength coverage 1000nm - 1700nm

Detector Type HgCdTe (1.7 μm cut-off)

Detector Architecture 256 x 256 or larger

Detector Temperature 77K - 130K (to achieve dark I)

Read Noise 6 e- (multiple samples)

Dark Current 3 e-/min/pixel

Readout Time 20 sec

Limiting Magnitude (AB)

Exposure control Mechanical shutter

Filters J&H, plus five special filters

3-channel Spectrograph Requirements

Optical:

Spectrograph architecture Integral field spectrograph, two channels

Wavelength coverage 350-600 nm, 550-1000nm

Spatial resolution of slicer 0.07 arcsec

Field-of-View 2" x 2"

Resolution 15A, 30A, 100A selectable

Detector Type CCD
Detector Architecture 2k x 2k
Detector Array Temperature 150 K

Quantum Efficiency 65% 1000nm, 92% 900nm, >85% 400-800nm

Read Noise \leq 4 e- @ 100kHz Dark Current 0.08 e-/min/pixel

IR:

Spectrograph architecture Integral field spectrograph, one channel

Wavelength coverage 900 to 1700 nm

Spatial resolution of slicer 0.12 arcsec

Field-of-View 2" x 2"

Resolution 30A, 50A, 200A selectable

Detector Type HgCdTe
Detector Architecture 2k x 2k

Detector Array Temperature 77 - 130 K (to achieve dark I)

Quantum Efficiency 56% @ 1000nm

Read Noise ≤ 5 e- (multiple samples)

Dark Current 1 e-/min/pixel

Spectroscopy Technology

- MicroLens Array
- Reflective Image Slicer (e.g. Palomar 200", NGST IFMOS)

Only the image slicer retains spatial information within each slice/sample

Integral Field Spectrograph for NGST

From LAS-NGST-IFMOS-004
O. Le Fevre, et.al - Laboratoire
d'Astronomie Spatiale in Marseilles

Integral Field Spectrograph for NGST

Solid Block Image Slicer Very high throughput (90%)

Spectroscopy w/ fibers

MicroLens Array:

From Haynes, astro-ph/9909017

Observatory Requirements

Aperture ~2.0 meter

Field-of-view 1° x 1°

Optical resolution diffraction-limited at 1 µm

Wavelength 350nm - 1700nm

Solar avoidance 70°

Temperature ~ 300 K

Fields of study North and South Ecliptic Poles

Image Stabilization Feedback from Focal Plane

Focal Length 20 meter

Spacecraft is always at near normal incidence to sun

Observatory

Simple Observatory consists of:

- 1) 3 mirror telescope w/ separable kinematic mount
- 2) Optics Bench w/ instrument bay
- 3) Baffled Sun Shade w/ body mounted solar panel and instrument radiator on opposing side
- 4) Spacecraft bus supporting telemetry (multiple antennae), propulsion, instrument electronics, *etc*

No moving parts (ex. filter wheels, shutters), rigid simple structure.

Orbit

After trade studies concentrating on lunar assist "Prometheus" Orbit Direct lunar insertion (two stage Delta IV), two mid-course corrections Lunar swingby to increase perigee above radiation belts High inclination (up to 70 degrees), high angle of perigee 7 day (8/40 Re) or 14 day (19/57 Re) period to avoid lunar perturbations Solves telemetry for high bandwidth images from optical imager

Spacecraft

In following talks:

Collaboration capabilities in spacecraft

Optical design

Spacecraft properties

Ground station

Mission operations

Preliminary Schedule

Preliminary Schedule

Milestone / Task	Milestone or Start Date
Preliminary Science Review	Dec-99
Phase A Start	Dec-99
Proposal Submission	Feb-00
SAGENAP Review - I	Mar-00
SAGENAP Review - II	Mar-01
ZDR / Lehman T/C/S Review – I	Jul-01
NASA - Mission Definition Review	Jul-01
SAGENAP Review – III	Mar-02
CDR / Lehman T/C/S Review - II	Jul-02
Project START	Oct-02
NASA System Definition Review	Nov-02
PDR & Configuration Baseline	Aug-03
Final Design Review	Apr-04
Instrument/Telescope I&T	Aug-05
NASA System Acceptance Review	Jan-06
NASA Flight Readiness Review	May-06
Launch Integration	May-06
Launch Window	Sep-06
Mission Operations & Data Analysis	Oct-06

SNAP Interim Organizational Chart

